
International Journal o f  Theoretical Physics, Vol. 33, No. 12, 1994 
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A unified approach to fundamental interactions as explored earlier is further 
elaborated and its consequences for the early universe studied especially in 
connection with the energy dependence of the coupling constants. 

In recent papers (Sivaram, 1993a,b) several interesting interrelation- 
ships between the coupling constants of the four fundamental interactions 
with underlying links to cosmological parameters were pointed out. 

For instance, we have the unified relation 

GF 0~2GN M~I 2 2 2 (I) 
= = O~ G N M p i c t s  \ A o c D ,  ] 

Here GF is the universal Fermi weak interaction constant (---1.4 x 
10-49ergcm3); GN is the Newtonian gravitational constant ('--6.67 x 
10 -8 cgs units); e _~ 1/137 is the electromagnetic fine structure constant; 
Mel = (hc/GN) i/2 is the Planck mass; ct s = g~/hc ~ 0.12 is the strong quark-  
gluon coupling constant; h and c are Planck's constant and the velocity of 
light, respectively; AQCD ~ 180 MeV is the QCD energy scale. In Sivaram 
(1993b), this equation was also written as GF=e2GNMgI(h /2Mec)  2, 
M e being the proton mass. 

As is well known, grand unified theories (GUT) of strong and elec- 
troweak interactions at lower energies reduce to effective four-fermion 
interactions mediated by exchanges of superheavy bosons (mass &Ix) with 
an 'effective Fermi constant' given by 

"~ G fmw~2  ~ 2 x 10 -75 Gcvv F~Mxx } erg cm 3 (2) 

(row is the weak boson mass ,,~ 100 GeV). 
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Again, analogous to the weak interaction case, where we have 

2 2 g,/rn w "~ GF 

here we have 

(3) 

2 2 gGuT/Mx ~ GGU T (4) 

Again in earlier works (Sivaram, 1979, 1982, 1986a,b, 1993b) it was 
pointed out that the Dirac equation for interacting fermions in a curved 
space with background torsion has an effective four-fermion self-interac- 
tion nonlinear spinor term of the form 

7~'~;~, + (~ hGefr/c3)7~'(fff,~,75t, b)75~ =0  (5) 

where the effective strong gravitational constant Gefr is related to the 
effective four-fermion constant GFcfr by 

G~fr = GFeff" C2/h 2 (6) 

So in this picture all fundamental interactions arise through four-fermion 
self-interactions in a curved space with torsion (non-Riemannian or 
Riemann-Cartan space), the curvature and torsion giving rise to such 
interaction terms. Spin-torsion interaction terms arising from such a 
background space (for the fundamental fermions present in it) give rise to 
the observed effective interactions, including gravity. 

This interaction constant G~r o r  GFe ff has its value depending on the 
energy scale at which the interaction is switched on, i.e., there is only 
one unified coupling which scales with energy as G~fr (or GFeff) '~ 1/E 2. 
In Sivaram (1990) this scaling was understood in terms of an energy- 
dependent string tension, T scaling as E 2 0-% T ~c2/G~fr) �9 At the Fermi 
beta decay scale ( E ~  102GeV), Gefr=GFc2/h 2, at the Planck scale 
(E.-~ 1019GeV), G~fr= GN, the usual Newtonian constant [or (GF)~ = 
Grqh2/c2= 6 x 10 -83 erg cm3], at the QCD scale, GCfr= Gf (the strong grav- 
ity constant ,.~ 10 38 GN)  , giving an effective interaction strength g2/hc ..~ 1, 
and so on. Again as shown in Sivaram (1990, 1993b), the different strengths 
of the various interactions as measured by (GF)~tr arises from the distribu- 
tion of the same universal quantum coupling constant flhc (fl ,.. 1) dis- 
tributed over regions of space-time of different surface areas. Thus the 
product (~hc x area) gives (Gv)r If the area is the square of the beta-de- 
cay length (GF/hC)~/2, then flhc x area = GF, the Fermi fl-decay constant. If 
the area is the square of the Planck length, then flhc x Planck area = (Gv)g 
giving the Newtonian constant GN [through equation (6)]. For strong 
interactions, the area is the proton Compton length squared, etc. 
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In general 

flhc x area = (GF)efr (7) 

From the uncertainty principle [also explained by energy-dependent 
string tension as in Sivaram (1990)] 

1 1 
area oc E-5, (GF)~er oC 

where E or M is the energy scale and 

~hc 2 = geff 

1 
or M2 (8) 

(9) 

is a universal constant characterizing the unified interaction strength. Thus 
2 

ge f f  
M 2 -- (GF)o~ (10) 

thus explaining equations (3) and (4). 
Equation (7) [giving rise to equation (10)] can also be elaborated 

through a recent work (Sivaram, 1993c,d) where it was shown that for a 
torsion-supported self-gravitating system the equilibrium radius is given as 

{ Gefrh 2~ '/3 
R , ~ \ ~ j  x const (11) 

This gives 

Mc2R 3 ~- Gee~h2/c 2 = (Gv)efr (12) 

[through equation (6)] or 

ER 3 = (Gv)efr (13) 

which can be written ER ; area = (GF)eer (as area oc r2). 
From the uncertainty principle ER ~- hc, giving finally flhc x area 

(Gv)~g, which is the same (fl ~ 1) as equation (7). Essentially equation (13) 
suggests that energy E squeezed into a volume V gives a (Gv)efr that is 
dependent on energy owing to quantum effects. As in equation (13), 
R oc I/E (for quantum systems), (Gv)efr is proportional to 1/E 2 or 1/M 2, or 
defining flhc as g~fr [equation (9)], we have 2 2 g~r = (Gv)eirE �9 Now in 
equation (10), it is assumed that g~r is a constant with energy and only 
( G F ) e f f  scales as 1/M 2 (since geg2 = flhc is a universal constant). Since 

2 geff = ( G F ) e f f  " M2 = const (14) 

However, in the usual GUT scenario, gear also slowly grows with energy as 
log M. Thus the renormalization group equation 

M(dgZ/dM) = 2/3n(gZ) 2 
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yields 

o r  

or from equation (10) 

where 

g 2(M) (15) 
g2(M~ = 1 + (2/3x)g2(M) ln(M/Mo) 

g~fr "~ g~/ln(M/Mo) (16) 

m 2 
2 gcff ~- (GF)~u (17) 

ln(M/Mo) 

la  , {MoV ) (18) 

[also G~  = Go(Mo/M)2]. 
While the torsion of the background space was seen to give rise to 

relations like equations (10) and (18), the logarithmic variation with energy 
of g2er can be considered as an effect of the curvature of space. It has been 
shown by Calzetta et al. (1985) that in a general curved space-time the 
effective value of the gauge coupling constant 2 gefr can decrease logarithmi- 
cally with curvature K as 

go 2 ~, (19) 
ge~ - (ln K/Ko) -1/2 

which translates into g2e~ ~-g~/ln(M/Mo) as in equation (16) (as M2oc 1/K, 
M oc 1/radius of curvature). Thus we naturally get equation (17), where 
(GF)effM 2 ~cons t  ~ [3he ([3 ~ 1). Asymptotic freedom is implied in both 
equations (16) and (19), as M--* ~ ,  K ~  ~ gives g~fr~0. This implies that 
the unified coupling constant tends to become vanishingly small in the 
early universe, when energies and curvatures become infinitely large, i.e., 
( Gv )evC--. O, g2ef -~ O, and Gerry0. 

At Planck energies G,fr~ GN, g~f~--*hc (gravity behaves like a strong 
interaction). Equations (10)-(19) imply that all energy variations of the 
effective coupling constant [g~fr or (GF)~ ] arise from the geometrical effects 
of torsion and curvature of the background space. 

In Sivaram (1990, 1993b) it was argued that below Epl, equations 
(18)-(19) hold and string tension T = c2/G~fr scales as E 2 [equation (18)]. 
This accounted for the strong electroweak and gravitational couplings. A 
space-based experiment to test this was also suggested in Sivaram (1993b). 
At E > Evl it was argued that T and Gen, remain constant (Sivaram, 1990, 
1993b) while (GF)eff--*Geff" h2/c 2 scales as 1/M 4 (M scales as R) since h 
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scales as 1/M 2. Thus the effective coupling g2ec--* flhc vanishes as M ~ co or 
R --* 0 (K --* oe). In fact above E > Evl the gravitational action is replaced 
by a Born-Infeld type of theory nonlinear in curvature and expanded as 
(Sivaram, 1986a,b) 

L e f t  = d g x ( - g )  L I6~G + hR2 "q- C ( G F ) e f f R 3  " " " 

This has solutions with no singular behavior as M ~ co. At E < Epl 
one has the usual Hilbert action for gravity (Sivaram, 1986a, 1992a). 

It must also be remarked that equation (11), which arises as an exact 
solution of the Einstein-Cartan theory modified to include internal quan- 
tum numbers, has a wide applicability. (It has a 3/8 factor inside brackets) 
(Sivaram, 1979). For M = me the electron mass, and Geff--G f = G N �9 1038 
(the strong gravity constant), it gives 

= (3Gfh2"~ '/3 
R \8meC4 J = 1 . 4  x 1 0  - 1 3  c m  (20) 

(the classical electron radius). 
With M = m e  the proton mass, and Geer= G/, equation (20) gives 

the proton Compton length, i.e., R-~ 10-14cm. With M = M w  the weak 
boson mass and Gefr= Gv" c2/h 2 it gives the //-decay length, i.e., R -  
7 x 10-t7cm. With M = Mp1 the Planck mass and Gee= GN it gives the 
Planck length R -~  1 0  - 3 3  cm, etc. The 3/8 factor would imply a g~ ~-//hc 
w i t h / / ~  0.1 for quarks and 0.3 for gluons. 

The relation ER3~-(GF)ee~-Gefr �9 h2/c 2 [see equation (13)] also has 
implications for macroscopic (astronomical) objects where h is replaced by 
the intrinsic angular momentum or action J of the system. (For such 
systems of course Gefr = GN .) 

Thus we can write (Sivaram, 1993b) 

ER 3 ~ //GNJ2/c 2 ( 2 1 )  

As examples: For a neutron star J-1050cgs,  E-1054ergs and R "~ 
106 cm, and for the universe (Sivaram, 1993b) J-~ 1093 cgs, E ,.~ 1077 ergs, 
and R ~-1028cm and equation (21) is satisfied. It also holds for other 
systems if r is replaced by a typical velocity characteristic of the system. 
Interestingly //GN/c 2 is the inverse of the superstring tension (Sivaram, 
1987). In Sivaram (1993b), it was shown how (Gv)efr as defined above for 
macroscopic bodies implies magnetic moments for such systems. We again 
have a framework for effectively describing a whole hierarchy of scales in 
the universe from the Planck length to the Hubble radius. 

The behavior of the effective coupling at E < E~,I is also consistent with 
the model given in Sivaram (1986a,b, 1987a,b, 1990). There it was suggested 
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that at energies > Ep I the action must be described by a quantity quadratic 
in the field strength (equivalently curvature) which is invariant under both 
general coordinate transformations and local scale transformations (ST) 
and which has a dimensionless running coupling constant ~v. A suitable 
action which is renormalizable and asymptotically free with all these 
properties is the Weyl action 

~v f d4z("-g) 1/2cabcdCabcd (22) 

The action (22) was used in another context in a strong gravity version 
of QCD which is a scale invariant and renormalizable theory (Salam and 
Sivaram, 1993). 

Here equation (22) describes 'gravity' which also includes all interactions 
at E > Ep1, i.e., at such energies we have only one unified interaction with 
a dimensionless coupling ~v, which is asymptotically free, ~ v ~ 0 ,  at 
E ~ ~ .  As shown in the above papers, the Weyl action implies M ~ R, i.e., 
confinement of energy, like the linearly rising potential confining color in 
QCD. As argued in Sivaram (1990), this implies a constant string tension 
(T = e2 /Ge f f  , Geff = G N = const) and energy ~ T • R oc R. Thus GMZe~rc~ 
R 2, i.e. ge~2 = flhc ~ GefrM 2 scales as R 2, vanishing at R ~ 0, which implies 
asymptotic freedom. Thus the interactions tend to vanish as R ~ 0. The 
action (22) for the unified description of gravity and GUTs at energies 
>Ep1 can also be written as (Sivaram, 1987a,b) 

O~vfo~vd4~( -O'I/2(W2-1FaFa ) o ,  ~ 4 -"~-~v (23) 

where W is the Weyl curvature scalar, related to the Riemann scalar as 

W = R - 6(A",/~ - A"A.) (24) 

where A is the Weyl four-vector gauge transforming as A~ ~ A ~  + 2,/~, 
with 2 the scale parameter. The index a is the Yang-Mil ls  field strength 
and can take values depending on the groups and multiplets considered. 
Scale invariance can be broken (there is no energy scale, ~v ~ 0 as E ~ ~ )  
at the Planck scale, where we can set W = Apl. Using the relation connect- 

t ing w and R and the transformations A~ = (Ap0-1/2A. and F~v = (Ap1)- 1/ 
2F~v, we have a natural separation of gravity and GUTs below Epi 

6 f(--g)l/2(xR -1- ,~ ~'atT,a~ , = -- ~GUT--~v-- -- Ap 1 (1 q_ 6A uA ,u) 0 
d 

with ~ a dimensional constant now related to A~,l and fixing the Newtonian 
GN. Including the fundamental fermionic sector, through actions leading to 
equation (5), one gets a coupling of the effective aGUT to the torsion and 
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curva tu re  o f  the spa.ce-time leading to the scal ing re la t ions  governed  by 
equa t ions  ( 10 ) - (19 ) .  
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